
3
Further development and analysis of the

classical linear regression model

Learning Outcomes

In this chapter, you will learn how to

● Construct models with more than one explanatory variable

● Test multiple hypotheses using an F -test

● Determine how well a model fits the data

● Form a restricted regression

● Derive the OLS parameter and standard error estimators using
matrix algebra

● Estimate multiple regression models and test multiple
hypotheses in EViews

3.1 Generalising the simple model to multiple linear regression

Previously, a model of the following form has been used:

yt = α + βxt + ut t = 1, 2, . . . , T (3.1)

Equation (3.1) is a simple bivariate regression model. That is, changes

in the dependent variable are explained by reference to changes in one

single explanatory variable x . But what if the financial theory or idea that

is sought to be tested suggests that the dependent variable is influenced

by more than one independent variable? For example, simple estimation

and tests of the CAPM can be conducted using an equation of the form of

(3.1), but arbitrage pricing theory does not pre-suppose that there is only

a single factor affecting stock returns. So, to give one illustration, stock

returns might be purported to depend on their sensitivity to unexpected

changes in:
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(1) inflation

(2) the differences in returns on short- and long-dated bonds

(3) industrial production

(4) default risks.

Having just one independent variable would be no good in this case. It

would of course be possible to use each of the four proposed explanatory

factors in separate regressions. But it is of greater interest and it is more

valid to have more than one explanatory variable in the regression equa-

tion at the same time, and therefore to examine the effect of all of the

explanatory variables together on the explained variable.

It is very easy to generalise the simple model to one with k regressors

(independent variables). Equation (3.1) becomes

yt = β1 + β2x2t + β3x3t + · · · + βk xkt + ut , t = 1, 2, . . . , T (3.2)

So the variables x2t , x3t , . . . , xkt are a set of k − 1 explanatory variables

which are thought to influence y, and the coefficient estimates β1,

β2, . . . , βk are the parameters which quantify the effect of each of these

explanatory variables on y. The coefficient interpretations are slightly al-

tered in the multiple regression context. Each coefficient is now known

as a partial regression coefficient, interpreted as representing the partial

effect of the given explanatory variable on the explained variable, after

holding constant, or eliminating the effect of, all other explanatory vari-

ables. For example, β̂2 measures the effect of x2 on y after eliminating

the effects of x3, x4, . . . , xk . Stating this in other words, each coefficient

measures the average change in the dependent variable per unit change

in a given independent variable, holding all other independent variables

constant at their average values.

3.2 The constant term

In (3.2) above, astute readers will have noticed that the explanatory vari-

ables are numbered x2, x3, . . . i.e. the list starts with x2 and not x1. So,

where is x1? In fact, it is the constant term, usually represented by a

column of ones of length T :

x1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1

1
·
·
·

1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(3.3)
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Thus there is a variable implicitly hiding next to β1, which is a column

vector of ones, the length of which is the number of observations in

the sample. The x1 in the regression equation is not usually written, in

the same way that one unit of p and 2 units of q would be written as

‘p + 2q’ and not ‘1p + 2q’. β1 is the coefficient attached to the constant

term (which was called α in the previous chapter). This coefficient can still

be referred to as the intercept, which can be interpreted as the average value

which y would take if all of the explanatory variables took a value of zero.

A tighter definition of k, the number of explanatory variables, is prob-

ably now necessary. Throughout this book, k is defined as the number of

‘explanatory variables’ or ‘regressors’ including the constant term. This

is equivalent to the number of parameters that are estimated in the re-

gression equation. Strictly speaking, it is not sensible to call the constant

an explanatory variable, since it does not explain anything and it always

takes the same values. However, this definition of k will be employed for

notational convenience.

Equation (3.2) can be expressed even more compactly by writing it in

matrix form

y = Xβ + u (3.4)

where: y is of dimension T × 1

X is of dimension T × k

β is of dimension k × 1

u is of dimension T × 1

The difference between (3.2) and (3.4) is that all of the time observations

have been stacked up in a vector, and also that all of the different ex-

planatory variables have been squashed together so that there is a col-

umn for each in the X matrix. Such a notation may seem unnecessarily

complex, but in fact, the matrix notation is usually more compact and

convenient. So, for example, if k is 2, i.e. there are two regressors, one of

which is the constant term (equivalent to a simple bivariate regression

yt = α + βxt + ut ), it is possible to write
⎡

⎢

⎢

⎢

⎣

y1

y2

...

yT

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

1 x21

1 x22

...
...

1 x2T

⎤

⎥

⎥

⎥

⎦

[

β1

β2

]

+

⎡

⎢

⎢

⎢

⎣

u1

u2

...

uT

⎤

⎥

⎥

⎥

⎦

(3.5)

T × 1 T × 2 2 × 1 T × 1

so that the xi j element of the matrix X represents the jth time observa-

tion on the ith variable. Notice that the matrices written in this way are
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conformable -- in other words, there is a valid matrix multiplication and

addition on the RHS.

The above presentation is the standard way to express matrices in the

time series econometrics literature, although the ordering of the indices is

different to that used in the mathematics of matrix algebra (as presented

in the mathematical appendix at the end of this book). In the latter case,

xi j would represent the element in row i and column j , although in the

notation used in the body of this book it is the other way around.

3.3 How are the parameters (the elements of the β vector)
calculated in the generalised case?

Previously, the residual sum of squares,
∑

û2
i was minimised with respect

to α and β. In the multiple regression context, in order to obtain estimates

of the parameters, β1, β2, . . . , βk , the RSS would be minimised with respect

to all the elements of β. Now, the residuals can be stacked in a vector:

û =

⎡

⎢

⎢

⎢

⎣

û1

û2

...

ûT

⎤

⎥

⎥

⎥

⎦

(3.6)

The RSS is still the relevant loss function, and would be given in a matrix

notation by

L = û′û = [û1û2 · · · ûT ]

⎡

⎢

⎢

⎢

⎣

û1

û2

...

ûT

⎤

⎥

⎥

⎥

⎦

= û2
1 + û2

2 + · · · + û2
T =

∑

û2
t

(3.7)

Using a similar procedure to that employed in the bivariate regression

case, i.e. substituting into (3.7), and denoting the vector of estimated pa-

rameters as β̂, it can be shown (see the appendix to this chapter) that the

coefficient estimates will be given by the elements of the expression

β̂ =

⎡

⎢

⎢

⎣

β̂1

β̂2
...

β̂k

⎤

⎥

⎥

⎦

= (X ′ X )−1 X ′y (3.8)

If one were to check the dimensions of the RHS of (3.8), it would be

observed to be k × 1. This is as required since there are k parameters to

be estimated by the formula for β̂.
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But how are the standard errors of the coefficient estimates calculated?

Previously, to estimate the variance of the errors, σ 2, an estimator denoted

by s2 was used

s2 =

∑

û2
t

T − 2
(3.9)

The denominator of (3.9) is given by T − 2, which is the number of de-

grees of freedom for the bivariate regression model (i.e. the number of

observations minus two). This essentially applies since two observations

are effectively ‘lost’ in estimating the two model parameters (i.e. in de-

riving estimates for α and β). In the case where there is more than one

explanatory variable plus a constant, and using the matrix notation, (3.9)

would be modified to

s2 =
û′û

T − k
(3.10)

where k = number of regressors including a constant. In this case, k

observations are ‘lost’ as k parameters are estimated, leaving T − k degrees

of freedom. It can also be shown (see the appendix to this chapter) that

the parameter variance--covariance matrix is given by

var(β̂) = s2(X ′ X )−1 (3.11)

The leading diagonal terms give the coefficient variances while the off-

diagonal terms give the covariances between the parameter estimates, so

that the variance of β̂1 is the first diagonal element, the variance of β̂2

is the second element on the leading diagonal, and the variance of β̂k is

the kth diagonal element. The coefficient standard errors are thus simply

given by taking the square roots of each of the terms on the leading

diagonal.

Example 3.1

The following model with 3 regressors (including the constant) is esti-

mated over 15 observations

y = β1 + β2x2 + β3x3 + u (3.12)

and the following data have been calculated from the original xs

(X ′ X )−1 =

⎡

⎢

⎣

2.0 3.5 −1.0

3.5 1.0 6.5

−1.0 6.5 4.3

⎤

⎥

⎦
, (X ′y) =

⎡

⎢

⎣

−3.0

2.2

0.6

⎤

⎥

⎦
, û′û = 10.96
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Calculate the coefficient estimates and their standard errors.

β̂ =

⎡

⎢

⎢

⎢

⎣

β̂1

β̂2
...

β̂k

⎤

⎥

⎥

⎥

⎦

= (X ′ X )−1 X ′y =

⎡

⎢

⎣

2.0 3.5 −1.0

3.5 1.0 6.5

−1.0 6.5 4.3

⎤

⎥

⎦

×

⎡

⎢

⎣

−3.0

2.2

0.6

⎤

⎥

⎦
=

⎡

⎢

⎣

1.10

−4.40

19.88

⎤

⎥

⎦
(3.13)

To calculate the standard errors, an estimate of σ 2 is required

s2 =
RSS

T − k
=

10.96

15 − 3
= 0.91 (3.14)

The variance--covariance matrix of β̂ is given by

s2(X ′ X )−1 = 0.91(X ′ X )−1 =

⎡

⎣

1.82 3.19 −0.91

3.19 0.91 5.92

−0.91 5.92 3.91

⎤

⎦ (3.15)

The coefficient variances are on the diagonals, and the standard errors

are found by taking the square roots of each of the coefficient variances

var(β̂1) = 1.82 SE(β̂1) = 1.35 (3.16)

var(β̂2) = 0.91 ⇔ SE(β̂2) = 0.95 (3.17)

var(β̂3) = 3.91 SE(β̂3) = 1.98 (3.18)

The estimated equation would be written

ŷ = 1.10 − 4.40x2 + 19.88x3

(1.35) (0.95) (1.98)
(3.19)

Fortunately, in practice all econometrics software packages will estimate

the cofficient values and their standard errors. Clearly, though, it is still

useful to understand where these estimates came from.

3.4 Testing multiple hypotheses: the F-test

The t -test was used to test single hypotheses, i.e. hypotheses involving

only one coefficient. But what if it is of interest to test more than one

coefficient simultaneously? For example, what if a researcher wanted to

determine whether a restriction that the coefficient values for β2 and β3

are both unity could be imposed, so that an increase in either one of the

two variables x2 or x3 would cause y to rise by one unit? The t -testing
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framework is not sufficiently general to cope with this sort of hypothesis

test. Instead, a more general framework is employed, centring on an F -test.

Under the F -test framework, two regressions are required, known as the

unrestricted and the restricted regressions. The unrestricted regression is

the one in which the coefficients are freely determined by the data, as

has been constructed previously. The restricted regression is the one in

which the coefficients are restricted, i.e. the restrictions are imposed on

some βs. Thus the F -test approach to hypothesis testing is also termed

restricted least squares, for obvious reasons.

The residual sums of squares from each regression are determined, and

the two residual sums of squares are ‘compared’ in the test statistic. The

F -test statistic for testing multiple hypotheses about the coefficient esti-

mates is given by

test statistic =
RRSS − URSS

URSS
×

T − k

m
(3.20)

where the following notation applies:

URSS = residual sum of squares from unrestricted regression

RRSS = residual sum of squares from restricted regression

m = number of restrictions

T = number of observations

k = number of regressors in unrestricted regression

The most important part of the test statistic to understand is the nu-

merator expression RRSS − URSS. To see why the test centres around a

comparison of the residual sums of squares from the restricted and un-

restricted regressions, recall that OLS estimation involved choosing the

model that minimised the residual sum of squares, with no constraints

imposed. Now if, after imposing constraints on the model, a residual sum

of squares results that is not much higher than the unconstrained model’s

residual sum of squares, it would be concluded that the restrictions were

supported by the data. On the other hand, if the residual sum of squares

increased considerably after the restrictions were imposed, it would be

concluded that the restrictions were not supported by the data and there-

fore that the hypothesis should be rejected.

It can be further stated that RRSS ≥ URSS. Only under a particular set

of very extreme circumstances will the residual sums of squares for the

restricted and unrestricted models be exactly equal. This would be the case

when the restriction was already present in the data, so that it is not really

a restriction at all (it would be said that the restriction is ‘not binding’, i.e.

it does not make any difference to the parameter estimates). So, for exam-

ple, if the null hypothesis is H0: β2 = 1 and β3 = 1, then RRSS = URSS only
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in the case where the coefficient estimates for the unrestricted regression

had been β̂2 = 1 and β̂3 = 1. Of course, such an event is extremely unlikely

to occur in practice.

Example 3.2

Dropping the time subscripts for simplicity, suppose that the general re-

gression is

y = β1 + β2x2 + β3x3 + β4x4 + u (3.21)

and that the restriction β3 + β4 = 1 is under test (there exists some hy-

pothesis from theory which suggests that this would be an interesting

hypothesis to study). The unrestricted regression is (3.21) above, but what

is the restricted regression? It could be expressed as

y = β1 + β2x2 + β3x3 + β4x4 + u s.t. (subject to) β3 + β4 = 1 (3.22)

The restriction (β3 + β4 = 1) is substituted into the regression so that it is

automatically imposed on the data. The way that this would be achieved

would be to make either β3 or β4 the subject of (3.22), e.g.

β3 + β4 = 1 ⇒ β4 = 1 − β3 (3.23)

and then substitute into (3.21) for β4

y = β1 + β2x2 + β3x3 + (1 − β3)x4 + u (3.24)

Equation (3.24) is already a restricted form of the regression, but it is not

yet in the form that is required to estimate it using a computer package. In

order to be able to estimate a model using OLS, software packages usually

require each RHS variable to be multiplied by one coefficient only. There-

fore, a little more algebraic manipulation is required. First, expanding the

brackets around (1 − β3)

y = β1 + β2x2 + β3x3 + x4 − β3x4 + u (3.25)

Then, gathering all of the terms in each βi together and rearranging

(y − x4) = β1 + β2x2 + β3(x3 − x4) + u (3.26)

Note that any variables without coefficients attached (e.g. x4 in (3.25)) are

taken over to the LHS and are then combined with y. Equation (3.26)

is the restricted regression. It is actually estimated by creating two new

variables -- call them, say, P and Q, where P = y − x4 and Q = x3 − x4 --

so the regression that is actually estimated is

P = β1 + β2x2 + β3 Q + u (3.27)
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What would have happened if instead β3 had been made the subject of

(3.23) and β3 had therefore been removed from the equation? Although

the equation that would have been estimated would have been different

from (3.27), the value of the residual sum of squares for these two models

(both of which have imposed upon them the same restriction) would be

the same.

The test statistic follows the F -distribution under the null hypothesis.

The F -distribution has 2 degrees of freedom parameters (recall that the

t -distribution had only 1 degree of freedom parameter, equal to T − k).

The value of the degrees of freedom parameters for the F -test are m, the

number of restrictions imposed on the model, and (T − k), the number of

observations less the number of regressors for the unrestricted regression,

respectively. Note that the order of the degree of freedom parameters is

important. The appropriate critical value will be in column m, row (T − k)

of the F -distribution tables.

3.4.1 The relationship between the t - and the F -distributions

Any hypothesis that could be tested with a t -test could also have been

tested using an F -test, but not the other way around. So, single hypotheses

involving one coefficient can be tested using a t - or an F -test, but multiple

hypotheses can be tested only using an F -test. For example, consider the

hypothesis

H0 : β2 = 0.5

H1 : β2 �= 0.5

This hypothesis could have been tested using the usual t -test

test stat =
β̂2 − 0.5

SE(β̂2)
(3.28)

or it could be tested in the framework above for the F -test. Note that the

two tests always give the same conclusion since the t -distribution is just

a special case of the F -distribution. For example, consider any random

variable Z that follows a t -distribution with T − k degrees of freedom,

and square it. The square of the t is equivalent to a particular form of the

F -distribution

Z2 ∼ t2 (T − k) then also Z2 ∼ F(1, T − k)

Thus the square of a t -distributed random variable with T − k degrees

of freedom also follows an F -distribution with 1 and T − k degrees of
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freedom. This relationship between the t and the F -distributions will al-

ways hold -- take some examples from the statistical tables and try it!

The F -distribution has only positive values and is not symmetrical.

Therefore, the null is rejected only if the test statistic exceeds the critical

F -value, although the test is a two-sided one in the sense that rejection

will occur if β̂2 is significantly bigger or significantly smaller than 0.5.

3.4.2 Determining the number of restrictions, m

How is the appropriate value of m decided in each case? Informally, the

number of restrictions can be seen as ‘the number of equality signs under

the null hypothesis’. To give some examples

H0 : hypothesis No. of restrictions, m

β1 + β2 = 2 1

β2 = 1 and β3 = −1 2

β2 = 0, β3 = 0 and β4 = 0 3

At first glance, you may have thought that in the first of these cases, the

number of restrictions was two. In fact, there is only one restriction that

involves two coefficients. The number of restrictions in the second two

examples is obvious, as they involve two and three separate component

restrictions, respectively.

The last of these three examples is particularly important. If the

model is

y = β1 + β2x2 + β3x3 + β4x4 + u (3.29)

then the null hypothesis of

H0 : β2 = 0 and β3 = 0 and β4 = 0

is tested by ‘THE’ regression F -statistic. It tests the null hypothesis that

all of the coefficients except the intercept coefficient are zero. This test is

sometimes called a test for ‘junk regressions’, since if this null hypothesis

cannot be rejected, it would imply that none of the independent variables

in the model was able to explain variations in y.

Note the form of the alternative hypothesis for all tests when more than

one restriction is involved

H1 : β2 �= 0 or β3 �= 0 or β4 �= 0

In other words, ‘and’ occurs under the null hypothesis and ‘or’ under the

alternative, so that it takes only one part of a joint null hypothesis to be

wrong for the null hypothesis as a whole to be rejected.
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3.4.3 Hypotheses that cannot be tested with either an F - or a t -test

It is not possible to test hypotheses that are not linear or that are multi-

plicative using this framework -- for example, H0 : β2β3 = 2, or H0 : β2
2 = 1

cannot be tested.

Example 3.3

Suppose that a researcher wants to test whether the returns on a com-

pany stock (y) show unit sensitivity to two factors (factor x2 and factor

x3) among three considered. The regression is carried out on 144 monthly

observations. The regression is

y = β1 + β2x2 + β3x3 + β4x4 + u (3.30)

(1) What are the restricted and unrestricted regressions?

(2) If the two RSS are 436.1 and 397.2, respectively, perform the test.

Unit sensitivity to factors x2 and x3 implies the restriction that the coef-

ficients on these two variables should be unity, so H0: β2 = 1 and β3 = 1.

The unrestricted regression will be the one given by (3.30) above. To derive

the restricted regression, first impose the restriction:

y = β1 + β2x2 + β3x3 + β4x4 + u s.t. β2 = 1 and β3 = 1 (3.31)

Replacing β2 and β3 by their values under the null hypothesis

y = β1 + x2 + x3 + β4x4 + u (3.32)

Rearranging

y − x2 − x3 = β1 + β4x4 + u (3.33)

Defining z = y − x2 − x3, the restricted regression is one of z on a constant

and x4

z = β1 + β4x4 + u (3.34)

The formula for the F -test statistic is given in (3.20) above. For this appli-

cation, the following inputs to the formula are available: T = 144, k = 4,

m = 2, RRSS = 436.1, URSS = 397.2. Plugging these into the formula gives

an F -test statistic value of 6.86. This statistic should be compared with an

F(m, T − k), which in this case is an F (2, 140). The critical values are 3.07

at the 5% level and 4.79 at the 1% level. The test statistic clearly exceeds

the critical values at both the 5% and 1% levels, and hence the null hy-

pothesis is rejected. It would thus be concluded that the restriction is not

supported by the data.

The following sections will now re-examine the CAPM model as an il-

lustration of how to conduct multiple hypothesis tests using EViews.
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3.5 Sample EViews output for multiple hypothesis tests

Reload the ‘capm.wk1’ workfile constructed in the previous chapter. As

a reminder, the results are included again below.

Dependent Variable: ERFORD
Method: Least Squares
Date: 08/21/07 Time: 15:02
Sample (adjusted): 2002M02 2007M04
Included observations: 63 after adjustments

Coefficient Std. Error t-Statistic Prob.

C 2.020219 2.801382 0.721151 0.4736
ERSANDP 0.359726 0.794443 0.452803 0.6523

R-squared 0.003350 Mean dependent var 2.097445
Adjusted R-squared −0.012989 S.D. dependent var 22.05129
S.E. of regression 22.19404 Akaike info criterion 9.068756
Sum squared resid 30047.09 Schwarz criterion 9.136792
Log likelihood −283.6658 Hannan-Quinn criter. 9.095514
F-statistic 0.205031 Durbin-Watson stat 1.785699
Prob(F-statistic) 0.652297

If we examine the regression F -test, this also shows that the regression

slope coefficient is not significantly different from zero, which in this case

is exactly the same result as the t -test for the beta coefficient (since there

is only one slope coefficient). Thus, in this instance, the F -test statistic is

equal to the square of the slope t -ratio.

Now suppose that we wish to conduct a joint test that both the intercept

and slope parameters are 1. We would perform this test exactly as for a

test involving only one coefficient. Select View/Coefficient Tests/Wald -

Coefficient Restrictions. . . and then in the box that appears, type C(1)=1,

C(2)=1. There are two versions of the test given: an F -version and a χ2-

version. The F -version is adjusted for small sample bias and should be

used when the regression is estimated using a small sample (see chapter 4).

Both statistics asymptotically yield the same result, and in this case the

p-values are very similar. The conclusion is that the joint null hypothesis,

H0 : β1 = 1 and β2 = 1, is not rejected.

3.6 Multiple regression in EViews using an APT-style model

In the spirit of arbitrage pricing theory (APT), the following example will

examine regressions that seek to determine whether the monthly returns
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on Microsoft stock can be explained by reference to unexpected changes

in a set of macroeconomic and financial variables. Open a new EViews

workfile to store the data. There are 254 monthly observations in the file

‘macro.xls’, starting in March 1986 and ending in April 2007. There are 13

series plus a column of dates. The series in the Excel file are the Microsoft

stock price, the S&P500 index value, the consumer price index, an indus-

trial production index, Treasury bill yields for the following maturities:

three months, six months, one year, three years, five years and ten years, a

measure of ‘narrow’ money supply, a consumer credit series, and a ‘credit

spread’ series. The latter is defined as the difference in annualised average

yields between a portfolio of bonds rated AAA and a portfolio of bonds

rated BAA.

Import the data from the Excel file and save the resulting workfile as

‘macro.wf1’.

The first stage is to generate a set of changes or differences for each of the

variables, since the APT posits that the stock returns can be explained by

reference to the unexpected changes in the macroeconomic variables rather

than their levels. The unexpected value of a variable can be defined as the

difference between the actual (realised) value of the variable and its ex-

pected value. The question then arises about how we believe that investors

might have formed their expectations, and while there are many ways to

construct measures of expectations, the easiest is to assume that investors

have naive expectations that the next period value of the variable is equal

to the current value. This being the case, the entire change in the variable

from one period to the next is the unexpected change (because investors

are assumed to expect no change).1

Transforming the variables can be done as described above. Press Genr

and then enter the following in the ‘Enter equation’ box:

dspread = baa aaa spread - baa aaa spread(-1)

Repeat these steps to conduct all of the following transformations:

dcredit = consumer credit - consumer credit(-1)

dprod = industrial production - industrial production(-1)

rmsoft = 100*dlog(microsoft)

rsandp = 100*dlog(sandp)

dmoney = m1money supply - m1money supply(-1)

1 It is an interesting question as to whether the differences should be taken on the levels

of the variables or their logarithms. If the former, we have absolute changes in the

variables, whereas the latter would lead to proportionate changes. The choice between

the two is essentially an empirical one, and this example assumes that the former is

chosen, apart from for the stock price series themselves and the consumer price series.
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inflation = 100*dlog(cpi)

term = ustb10y - ustb3m

and then click OK. Next, we need to apply further transformations to some

of the transformed series, so repeat the above steps to generate

dinflation = inflation - inflation(-1)

mustb3m = ustb3m/12

rterm = term - term(-1)

ermsoft = rmsoft - mustb3m

ersandp = rsandp - mustb3m

The final two of these calculate excess returns for the stock and for the

index.

We can now run the regression. So click Object/New Object/Equation

and name the object ‘msoftreg’. Type the following variables in the Equa-

tion specification window

ERMSOFT C ERSANDP DPROD DCREDIT DINFLATION DMONEY DSPREAD

RTERM

and use Least Squares over the whole sample period. The table of results

will appear as follows.

Dependent Variable: ERMSOFT
Method: Least Squares
Date: 08/21/07 Time: 21:45
Sample (adjusted): 1986M05 2007M04
Included observations: 252 after adjustments

Coefficient Std. Error t-Statistic Prob.

C −0.587603 1.457898 −0.403048 0.6873
ERSANDP 1.489434 0.203276 7.327137 0.0000
DPROD 0.289322 0.500919 0.577583 0.5641

DCREDIT −5.58E-05 0.000160 −0.347925 0.7282
DINFLATION 4.247809 2.977342 1.426712 0.1549

DMONEY −1.161526 0.713974 −1.626847 0.1051
DSPREAD 12.15775 13.55097 0.897187 0.3705
RTERM 6.067609 3.321363 1.826843 0.0689

R-squared 0.203545 Mean dependent var −0.420803
Adjusted R-squared 0.180696 S.D. dependent var 15.41135
S.E. of regression 13.94965 Akaike info criterion 8.140017
Sum squared resid 47480.62 Schwarz criterion 8.252062
Log likelihood −1017.642 Hannan-Quinn criter. 8.185102
F-statistic 8.908218 Durbin-Watson stat 2.156221
Prob(F-statistic) 0.000000
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Take a few minutes to examine the main regression results. Which of

the variables has a statistically significant impact on the Microsoft excess

returns? Using your knowledge of the effects of the financial and macro-

economic environment on stock returns, examine whether the coefficients

have their expected signs and whether the sizes of the parameters are

plausible.

The regression F-statistic takes a value 8.908. Remember that this tests

the null hypothesis that all of the slope parameters are jointly zero. The

p-value of zero attached to the test statistic shows that this null hy-

pothesis should be rejected. However, there are a number of parame-

ter estimates that are not significantly different from zero -- specifically

those on the DPROD, DCREDIT and DSPREAD variables. Let us test the

null hypothesis that the parameters on these three variables are jointly

zero using an F -test. To test this, Click on View/Coefficient Tests/Wald –

Coefficient Restrictions. . . and in the box that appears type C(3)=0, C(4)=0,

C(7)=0 and click OK. The resulting F -test statistic follows an F (3, 244) dis-

tribution as there are three restrictions, 252 usable observations and eight

parameters to estimate in the unrestricted regression. The F -statistic value

is 0.402 with p-value 0.752, suggesting that the null hypothesis cannot be

rejected. The parameters on DINLATION and DMONEY are almost signifi-

cant at the 10% level and so the associated parameters are not included

in this F -test and the variables are retained.

There is a procedure known as a stepwise regression that is now avail-

able in EViews 6. Stepwise regression is an automatic variable selection

procedure which chooses the jointly most ‘important’ (variously defined)

explanatory variables from a set of candidate variables. There are a num-

ber of different stepwise regression procedures, but the simplest is the

uni-directional forwards method. This starts with no variables in the re-

gression (or only those variables that are always required by the researcher

to be in the regression) and then it selects first the variable with the low-

est p-value (largest t -ratio) if it were included, then the variable with the

second lowest p-value conditional upon the first variable already being in-

cluded, and so on. The procedure continues until the next lowest p-value

relative to those already included variables is larger than some specified

threshold value, then the selection stops, with no more variables being

incorporated into the model.

To conduct a stepwise regression which will automatically select from

among these variables the most important ones for explaining the vari-

ations in Microsoft stock returns, click Proc and then Equation. Name

the equation Msoftstepwise and then in the ‘Estimation settings/Method’

box, change LS -- Least Squares (NLS and ARMA) to STEPLS – Stepwise Least
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Squares and then in the top box that appears, ‘Dependent variable fol-

lowed by list of always included regressors’, enter

ERMSOFT C

This shows that the dependent variable will be the excess returns on

Microsoft stock and that an intercept will always be included in the re-

gression. If the researcher had a strong prior view that a particular ex-

planatory variable must always be included in the regression, it should be

listed in this first box. In the second box, ‘List of search regressors’, type

the list of all of the explanatory variables used above: ERSANDP DPROD

DCREDIT DINFLATION DMONEY DSPREAD RTERM. The window will ap-

pear as in screenshot 3.1.

Screenshot 3.1

Stepwise procedure

equation estimation

window

Clicking on the ‘Options’ tab gives a number of ways to conduct the

regression. For example, ‘Forwards’ will start with the list of required

regressors (the intercept only in this case) and will sequentially add to
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them, while ‘Backwards’ will start by including all of the variables and

will sequentially delete variables from the regression. The default criterion

is to include variables if the p-value is less than 0.5, but this seems high

and could potentially result in the inclusion of some very insignificant

variables, so modify this to 0.2 and then click OK to see the results.

As can be seen, the excess market return, the term structure, money

supply and unexpected inflation variables have all been included, while

the default spread and credit variables have been omitted.

Dependent Variable: ERMSOFT
Method: Stepwise Regression
Date: 08/27/07 Time: 10:21
Sample (adjusted): 1986M05 2007M04
Included observations: 252 after adjustments
Number of always included regressors: 1
Number of search regressors: 7
Selection method: Stepwise forwards
Stopping criterion: p-value forwards/backwards = 0.2/0.2

Coefficient Std. Error t-Statistic Prob.∗

C −0.947198 0.8787 −1.077954 0.2821

ERSANDP 1.471400 0.201459 7.303725 0.0000
RTERM 6.121657 3.292863 1.859068 0.0642

DMONEY −1.171273 0.702523 −1.667238 0.0967
DINFLATION 4.013512 2.876986 1.395040 0.1643

R-squared 0.199612 Mean dependent var −0.420803
Adjusted R-squared 0.186650 S.D. dependent var 15.41135
S.E. of regression 13.89887 Akaike info criterion 8.121133
Sum squared resid 47715.09 Schwarz criterion 8.191162
Log likelihood −1018.263 Hannan-Quinn criter. 8.149311
F-statistic 15.40008 Durbin-Watson stat 2.150604
Prob(F-statistic) 0.000000

Selection Summary

Added ERSANDP
Added RTERM

Added DMONEY
Added DINFLATION

∗Note: p-values and subsequent tests do not account for stepwise selection.

Stepwise procedures have been strongly criticised by statistical purists.

At the most basic level, they are sometimes argued to be no better than

automated procedures for data mining, in particular if the list of potential

candidate variables is long and results from a ‘fishing trip’ rather than
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a strong prior financial theory. More subtly, the iterative nature of the

variable selection process implies that the size of the tests on parameters

attached to variables in the final model will not be the nominal values (e.g.

5%) that would have applied had this model been the only one estimated.

Thus the p-values for tests involving parameters in the final regression

should really be modified to take into account that the model results

from a sequential procedure, although they are usually not in statistical

packages such as EViews.

3.6.1 A note on sample sizes and asymptotic theory

A question that is often asked by those new to econometrics is ‘what is an

appropriate sample size for model estimation?’ While there is no definitive

answer to this question, it should be noted that most testing procedures

in econometrics rely on asymptotic theory. That is, the results in theory

hold only if there are an infinite number of observations. In practice, an in-

finite number of observations will never be available and fortunately, an

infinite number of observations are not usually required to invoke the

asymptotic theory! An approximation to the asymptotic behaviour of the

test statistics can be obtained using finite samples, provided that they are

large enough. In general, as many observations as possible should be used

(although there are important caveats to this statement relating to ‘struc-

tural stability’, discussed in chapter 4). The reason is that all the researcher

has at his disposal is a sample of data from which to estimate parameter

values and to infer their likely population counterparts. A sample may fail

to deliver something close to the exact population values owing to sam-

pling error. Even if the sample is randomly drawn from the population,

some samples will be more representative of the behaviour of the popu-

lation than others, purely owing to ‘luck of the draw’. Sampling error is

minimised by increasing the size of the sample, since the larger the sam-

ple, the less likely it is that all of the data drawn will be unrepresentative

of the population.

3.7 Data mining and the true size of the test

Recall that the probability of rejecting a correct null hypothesis is equal

to the size of the test, denoted α. The possibility of rejecting a correct null

hypothesis arises from the fact that test statistics are assumed to follow

a random distribution and hence they will take on extreme values that

fall in the rejection region some of the time by chance alone. A conse-

quence of this is that it will almost always be possible to find significant
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relationships between variables if enough variables are examined. For ex-

ample, suppose that a dependent variable yt and 20 explanatory variables

x2t , . . . , x21t (excluding a constant term) are generated separately as in-

dependent normally distributed random variables. Then y is regressed

separately on each of the 20 explanatory variables plus a constant, and

the significance of each explanatory variable in the regressions is exam-

ined. If this experiment is repeated many times, on average one of the 20

regressions will have a slope coefficient that is significant at the 5% level

for each experiment. The implication is that for any regression, if enough

explanatory variables are employed in a regression, often one or more will

be significant by chance alone. More concretely, it could be stated that if

an α% size of test is used, on average one in every (100/α) regressions will

have a significant slope coefficient by chance alone.

Trying many variables in a regression without basing the selection of

the candidate variables on a financial or economic theory is known as

‘data mining’ or ‘data snooping’. The result in such cases is that the true

significance level will be considerably greater than the nominal signifi-

cance level assumed. For example, suppose that 20 separate regressions

are conducted, of which three contain a significant regressor, and a 5%

nominal significance level is assumed, then the true significance level

would be much higher (e.g. 25%). Therefore, if the researcher then shows

only the results for the regression containing the final three equations

and states that they are significant at the 5% level, inappropriate conclu-

sions concerning the significance of the variables would result.

As well as ensuring that the selection of candidate regressors for in-

clusion in a model is made on the basis of financial or economic theory,

another way to avoid data mining is by examining the forecast perfor-

mance of the model in an ‘out-of-sample’ data set (see chapter 5). The

idea is essentially that a proportion of the data is not used in model esti-

mation, but is retained for model testing. A relationship observed in the

estimation period that is purely the result of data mining, and is there-

fore spurious, is very unlikely to be repeated for the out-of-sample period.

Therefore, models that are the product of data mining are likely to fit very

poorly and to give very inaccurate forecasts for the out-of-sample period.

3.8 Goodness of fit statistics

3.8.1 R2

It is desirable to have some measure of how well the regression model

actually fits the data. In other words, it is desirable to have an answer

to the question, ‘how well does the model containing the explanatory
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variables that was proposed actually explain variations in the dependent

variable?’ Quantities known as goodness of fit statistics are available to test

how well the sample regression function (SRF) fits the data -- that is, how

‘close’ the fitted regression line is to all of the data points taken together.

Note that it is not possible to say how well the sample regression function

fits the population regression function -- i.e. how the estimated model

compares with the true relationship between the variables, since the latter

is never known.

But what measures might make plausible candidates to be goodness

of fit statistics? A first response to this might be to look at the residual

sum of squares (RSS). Recall that OLS selected the coefficient estimates that

minimised this quantity, so the lower was the minimised value of the RSS,

the better the model fitted the data. Consideration of the RSS is certainly

one possibility, but RSS is unbounded from above (strictly, RSS is bounded

from above by the total sum of squares -- see below) -- i.e. it can take any

(non-negative) value. So, for example, if the value of the RSS under OLS

estimation was 136.4, what does this actually mean? It would therefore be

very difficult, by looking at this number alone, to tell whether the regres-

sion line fitted the data closely or not. The value of RSS depends to a great

extent on the scale of the dependent variable. Thus, one way to pointlessly

reduce the RSS would be to divide all of the observations on y by 10!

In fact, a scaled version of the residual sum of squares is usually employed.

The most common goodness of fit statistic is known as R2. One way to

define R2 is to say that it is the square of the correlation coefficient

between y and ŷ -- that is, the square of the correlation between the values

of the dependent variable and the corresponding fitted values from the

model. A correlation coefficient must lie between −1 and +1 by definition.

Since R2 defined in this way is the square of a correlation coefficient, it

must lie between 0 and 1. If this correlation is high, the model fits the

data well, while if the correlation is low (close to zero), the model is not

providing a good fit to the data.

Another definition of R2 requires a consideration of what the model

is attempting to explain. What the model is trying to do in effect is to

explain variability of y about its mean value, ȳ. This quantity, ȳ, which

is more specifically known as the unconditional mean of y, acts like a

benchmark since, if the researcher had no model for y, he could do no

worse than to regress y on a constant only. In fact, the coefficient estimate

for this regression would be the mean of y. So, from the regression

yt = β1 + ut (3.35)

the coefficient estimate β̂1, will be the mean of y, i.e. ȳ. The total variation

across all observations of the dependent variable about its mean value is
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known as the total sum of squares, TSS, which is given by:

TSS =
∑

t

(yt − ȳ)2 (3.36)

The TSS can be split into two parts: the part that has been explained by the

model (known as the explained sum of squares, ESS) and the part that the

model was not able to explain (the RSS). That is

TSS = ESS + RSS (3.37)
∑

t

(yt − ȳ)2 =
∑

t

(ŷt − ȳ)2 +
∑

t

û2
t (3.38)

Recall also that the residual sum of squares can also be expressed as
∑

t

(yt − ŷt )
2

since a residual for observation t is defined as the difference between the

actual and fitted values for that observation. The goodness of fit statistic

is given by the ratio of the explained sum of squares to the total sum of

squares:

R2 =
ESS

TSS
(3.39)

but since TSS = ESS + RSS, it is also possible to write

R2 =
ESS

TSS
=

TSS − RSS

TSS
= 1 −

RSS

TSS
(3.40)

R2 must always lie between zero and one (provided that there is a constant

term in the regression). This is intuitive from the correlation interpreta-

tion of R2 given above, but for another explanation, consider two extreme

cases

RSS = TSS i.e. ESS = 0 so R2 = ESS/TSS = 0

ESS = TSS i.e. RSS = 0 so R2 = ESS/TSS = 1

In the first case, the model has not succeeded in explaining any of the

variability of y about its mean value, and hence the residual and total

sums of squares are equal. This would happen only where the estimated

values of all of the coefficients were exactly zero. In the second case, the

model has explained all of the variability of y about its mean value, which

implies that the residual sum of squares will be zero. This would happen

only in the case where all of the observation points lie exactly on the

fitted line. Neither of these two extremes is likely in practice, of course,

but they do show that R2 is bounded to lie between zero and one, with a

higher R2 implying, everything else being equal, that the model fits the

data better.
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R2 = 0

demonstrated by a

flat estimated line,

i.e. a zero slope

coefficient
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Figure 3.2

R2 = 1 when all data

points lie exactly on

the estimated line

To sum up, a simple way (but crude, as explained next) to tell whether

the regression line fits the data well is to look at the value of R2. A value of

R2 close to 1 indicates that the model explains nearly all of the variability

of the dependent variable about its mean value, while a value close to zero

indicates that the model fits the data poorly. The two extreme cases, where

R2 = 0 and R2 = 1, are indicated in figures 3.1 and 3.2 in the context of

a simple bivariate regression.

3.8.2 Problems with R2 as a goodness of fit measure

R2 is simple to calculate, intuitive to understand, and provides a broad

indication of the fit of the model to the data. However, there are a number

of problems with R2 as a goodness of fit measure:
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(1) R2 is defined in terms of variation about the mean of y so that if

a model is reparameterised (rearranged) and the dependent variable

changes, R2 will change, even if the second model was a simple re-

arrangement of the first, with identical RSS. Thus it is not sensible

to compare the value of R2 across models with different dependent

variables.

(2) R2 never falls if more regressors are added to the regression. For ex-

ample, consider the following two models:

Regression 1: y = β1 + β2x2 + β3x3 + u (3.41)

Regression 2: y = β1 + β2x2 + β3x3 + β4x4 + u (3.42)

R2 will always be at least as high for regression 2 relative to regression

1. The R2 from regression 2 would be exactly the same as that for

regression 1 only if the estimated value of the coefficient on the new

variable were exactly zero, i.e. β̂4 = 0. In practice, β̂4 will always be non-

zero, even if not significantly so, and thus in practice R2 always rises

as more variables are added to a model. This feature of R2 essentially

makes it impossible to use as a determinant of whether a given variable

should be present in the model or not.

(3) R2 can take values of 0.9 or higher for time series regressions, and

hence it is not good at discriminating between models, since a wide

array of models will frequently have broadly similar (and high) values

of R2.

3.8.3 Adjusted R2

In order to get around the second of these three problems, a modifica-

tion to R2 is often made which takes into account the loss of degrees of

freedom associated with adding extra variables. This is known as R̄2, or

adjusted R2, which is defined as

R̄2 = 1 −

[

T − 1

T − k
(1 − R2)

]

(3.43)

So if an extra regressor (variable) is added to the model, k increases and

unless R2 increases by a more than off-setting amount, R̄2 will actually

fall. Hence R̄2 can be used as a decision-making tool for determining

whether a given variable should be included in a regression model or not,

with the rule being: include the variable if R̄2 rises and do not include it

if R̄2 falls.

However, there are still problems with the maximisation of R̄2 as crite-

rion for model selection, and principal among these is that it is a ‘soft’
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rule, implying that by following it, the researcher will typically end up

with a large model, containing a lot of marginally significant or insignif-

icant variables. Also, while R2 must be at least zero if an intercept is

included in the regression, its adjusted counterpart may take negative

values, even with an intercept in the regression, if the model fits the data

very poorly.

Now reconsider the results from the previous exercises using EViews in

the previous chapter and earlier in this chapter. If we first consider the

hedging model from chapter 2, the R2 value for the returns regression

was only 0.01, indicating that a mere 1% of the variation in spot returns

is explained by the futures returns -- a very poor model fit indeed.

The fit is no better for the Ford stock CAPM regression described in

chapter 2, where the R2 is less than 1% and the adjusted R2 is actually

negative. The conclusion here would be that for this stock and this sample

period, almost none of the monthly movement in the excess returns can

be attributed to movements in the market as a whole, as measured by the

S&P500.

Finally, if we look at the results from the recent regressions for Mi-

crosoft, we find a considerably better fit. It is of interest to compare the

model fit for the original regression that included all of the variables

with the results of the stepwise procedure. We can see that the raw R2

is slightly higher for the original regression (0.204 versus 0.200 for the

stepwise regression, to three decimal places), exactly as we would expect.

Since the original regression contains more variables, the R2-value must

be at least as high. But comparing the R̄2s, the stepwise regression value

(0.187) is slightly higher than for the full regression (0.181), indicating

that the additional regressors in the full regression do not justify their

presence, at least according to this criterion.

Box 3.1 The relationship between the regression F -statistic and R2

There is a particular relationship between a regression’s R2 value and the regression

F -statistic. Recall that the regression F -statistic tests the null hypothesis that all of

the regression slope parameters are simultaneously zero. Let us call the residual sum

of squares for the unrestricted regression including all of the explanatory variables

RSS, while the restricted regression will simply be one of yt on a constant

yt = β1 + ut (3.44)

Since there are no slope parameters in this model, none of the variability of yt about

its mean value would have been explained. Thus the residual sum of squares for

equation (3.44) will actually be the total sum of squares of yt , TSS. We could write the
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usual F -statistic formula for testing this null that all of the slope parameters are jointly

zero as

F − stat =
TSS − RSS

RSS
×

T − k

k − 1
(3.45)

In this case, the number of restrictions (‘m’) is equal to the number of slope

parameters, k − 1. Recall that TSS − RSS = ESS and dividing the numerator and

denominator of equation (3.45) by TSS, we obtain

F − stat =
ESS/TSS

RSS/TSS
×

T − k

k − 1
(3.46)

Now the numerator of equation (3.46) is R2, while the denominator is 1 − R2, so that

the F -statistic can be written

F − stat =
R2(T − k)

1 − R2(k − 1)
(3.47)

This relationship between the F -statistic and R2 holds only for a test of this null

hypothesis and not for any others.

There now follows another case study of the application of the OLS

method of regression estimation, including interpretation of t -ratios

and R2.

3.9 Hedonic pricing models

One application of econometric techniques where the coefficients have

a particularly intuitively appealing interpretation is in the area of hedo-

nic pricing models. Hedonic models are used to value real assets, especially

housing, and view the asset as representing a bundle of characteristics,

each of which gives either utility or disutility to its consumer. Hedonic

models are often used to produce appraisals or valuations of properties,

given their characteristics (e.g. size of dwelling, number of bedrooms,

location, number of bathrooms, etc). In these models, the coefficient esti-

mates represent ‘prices of the characteristics’.

One such application of a hedonic pricing model is given by Des Rosiers

and Thérialt (1996), who consider the effect of various amenities on rental

values for buildings and apartments in five sub-markets in the Quebec area

of Canada. After accounting for the effect of ‘contract-specific’ features

which will affect rental values (such as whether furnishings, lighting, or

hot water are included in the rental price), they arrive at a model where

the rental value in Canadian dollars per month (the dependent variable) is
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a function of 9--14 variables (depending on the area under consideration).

The paper employs 1990 data for the Quebec City region, and there are

13,378 observations. The 12 explanatory variables are:

LnAGE log of the apparent age of the property

NBROOMS number of bedrooms

AREABYRM area per room (in square metres)

ELEVATOR a dummy variable = 1 if the building has an

elevator; 0 otherwise

BASEMENT a dummy variable = 1 if the unit is located in a

basement; 0 otherwise

OUTPARK number of outdoor parking spaces

INDPARK number of indoor parking spaces

NOLEASE a dummy variable = 1 if the unit has no lease

attached to it; 0 otherwise

LnDISTCBD log of the distance in kilometres to the central

business district (CBD)

SINGLPAR percentage of single parent families in the area

where the building stands

DSHOPCNTR distance in kilometres to the nearest shopping

centre

VACDIFF1 vacancy difference between the building and the

census figure

This list includes several variables that are dummy variables. Dummy vari-

ables are also known as qualitative variables because they are often used to

numerically represent a qualitative entity. Dummy variables are usually

specified to take on one of a narrow range of integer values, and in most

instances only zero and one are used.

Dummy variables can be used in the context of cross-sectional or time

series regressions. The latter case will be discussed extensively below. Ex-

amples of the use of dummy variables as cross-sectional regressors would

be for sex in the context of starting salaries for new traders (e.g. male = 0,

female = 1) or in the context of sovereign credit ratings (e.g. developing

country = 0, developed country = 1), and so on. In each case, the dummy

variables are used in the same way as other explanatory variables and the

coefficients on the dummy variables can be interpreted as the average dif-

ferences in the values of the dependent variable for each category, given

all of the other factors in the model.

Des Rosiers and Thérialt (1996) report several specifications for five dif-

ferent regions, and they present results for the model with variables as
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Table 3.1 Hedonic model of rental values in Quebec City, 1990.

Dependent variable: Canadian dollars per month

A priori
Variable Coefficient t-ratio sign expected

Intercept 282.21 56.09 +

LnAGE −53.10 −59.71 −

NBROOMS 48.47 104.81 +

AREABYRM 3.97 29.99 +

ELEVATOR 88.51 45.04 +

BASEMENT −15.90 −11.32 −

OUTPARK 7.17 7.07 +

INDPARK 73.76 31.25 +

NOLEASE −16.99 −7.62 −

LnDISTCBD 5.84 4.60 −

SINGLPAR −4.27 −38.88 −

DSHOPCNTR −10.04 −5.97 −

VACDIFF1 0.29 5.98 −

Notes: Adjusted R2 = 0.651; regression F-statistic = 2082.27.

Source: Des Rosiers and Thérialt (1996). Reprinted with permission

of American Real Estate Society.

discussed here in their exhibit 4, which is adapted and reported here as

table 3.1.

The adjusted R2 value indicates that 65% of the total variability of rental

prices about their mean value is explained by the model. For a cross-

sectional regression, this is quite high. Also, all variables are significant at

the 0.01% level or lower and consequently, the regression F-statistic rejects

very strongly the null hypothesis that all coefficient values on explanatory

variables are zero.

As stated above, one way to evaluate an econometric model is to de-

termine whether it is consistent with theory. In this instance, no real

theory is available, but instead there is a notion that each variable will af-

fect rental values in a given direction. The actual signs of the coefficients

can be compared with their expected values, given in the last column of

table 3.1 (as determined by this author). It can be seen that all coefficients

except two (the log of the distance to the CBD and the vacancy differential)

have their predicted signs. It is argued by Des Rosiers and Thérialt that the

‘distance to the CBD’ coefficient may be expected to have a positive sign

since, while it is usually viewed as desirable to live close to a town centre,

everything else being equal, in this instance most of the least desirable

neighbourhoods are located towards the centre.
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The coefficient estimates themselves show the Canadian dol-

lar rental price per month of each feature of the dwelling. To offer a

few illustrations, the NBROOMS value of 48 (rounded) shows that, every-

thing else being equal, one additional bedroom will lead to an average

increase in the rental price of the property by $48 per month at 1990

prices. A basement coefficient of −16 suggests that an apartment located

in a basement commands a rental $16 less than an identical apartment

above ground. Finally the coefficients for parking suggest that on average

each outdoor parking space adds $7 to the rent while each indoor parking

space adds $74, and so on. The intercept shows, in theory, the rental that

would be required of a property that had zero values on all the attributes.

This case demonstrates, as stated previously, that the coefficient on the

constant term often has little useful interpretation, as it would refer to a

dwelling that has just been built, has no bedrooms each of zero size, no

parking spaces, no lease, right in the CBD and shopping centre, etc.

One limitation of such studies that is worth mentioning at this stage is

their assumption that the implicit price of each characteristic is identical

across types of property, and that these characteristics do not become

saturated. In other words, it is implicitly assumed that if more and more

bedrooms or allocated parking spaces are added to a dwelling indefinitely,

the monthly rental price will rise each time by $48 and $7, respectively.

This assumption is very unlikely to be upheld in practice, and will result in

the estimated model being appropriate for only an ‘average’ dwelling. For

example, an additional indoor parking space is likely to add far more value

to a luxury apartment than a basic one. Similarly, the marginal value of

an additional bedroom is likely to be bigger if the dwelling currently has

one bedroom than if it already has ten. One potential remedy for this

would be to use dummy variables with fixed effects in the regressions;

see, for example, chapter 10 for an explanation of these.

3.10 Tests of non-nested hypotheses

All of the hypothesis tests conducted thus far in this book have been in

the context of ‘nested’ models. This means that, in each case, the test in-

volved imposing restrictions on the original model to arrive at a restricted

formulation that would be a sub-set of, or nested within, the original spec-

ification.

However, it is sometimes of interest to compare between non-nested

models. For example, suppose that there are two researchers working

independently, each with a separate financial theory for explaining the
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variation in some variable, yt . The models selected by the researchers re-

spectively could be

yt = α1 + α2x2t + ut (3.48)

yt = β1 + β2x3t + vt (3.49)

where ut and vt are iid error terms. Model (3.48) includes variable x2 but

not x3, while model (3.49) includes x3 but not x2. In this case, neither

model can be viewed as a restriction of the other, so how then can the

two models be compared as to which better represents the data, yt? Given

the discussion in section 3.8, an obvious answer would be to compare the

values of R2 or adjusted R2 between the models. Either would be equally

applicable in this case since the two specifications have the same num-

ber of RHS variables. Adjusted R2 could be used even in cases where the

number of variables was different across the two models, since it employs

a penalty term that makes an allowance for the number of explanatory

variables. However, adjusted R2 is based upon a particular penalty func-

tion (that is, T − k appears in a specific way in the formula). This form of

penalty term may not necessarily be optimal. Also, given the statement

above that adjusted R2 is a soft rule, it is likely on balance that use of

it to choose between models will imply that models with more explana-

tory variables are favoured. Several other similar rules are available, each

having more or less strict penalty terms; these are collectively known as

‘information criteria’. These are explained in some detail in chapter 5, but

suffice to say for now that a different strictness of the penalty term will

in many cases lead to a different preferred model.

An alternative approach to comparing between non-nested models

would be to estimate an encompassing or hybrid model. In the case of

(3.48) and (3.49), the relevant encompassing model would be

yt = γ1 + γ2x2t + γ3x3t + wt (3.50)

where wt is an error term. Formulation (3.50) contains both (3.48) and

(3.49) as special cases when γ3 and γ2 are zero, respectively. Therefore, a

test for the best model would be conducted via an examination of the

significances of γ2 and γ3 in model (3.50). There will be four possible

outcomes (box 3.2).

However, there are several limitations to the use of encompassing re-

gressions to select between non-nested models. Most importantly, even if

models (3.48) and (3.49) have a strong theoretical basis for including the

RHS variables that they do, the hybrid model may be meaningless. For

example, it could be the case that financial theory suggests that y could

either follow model (3.48) or model (3.49), but model (3.50) is implausible.
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Box 3.2 Selecting between models

(1) γ2 is statistically significant but γ3 is not. In this case, (3.50) collapses to (3.48),

and the latter is the preferred model.

(2) γ3 is statistically significant but γ2 is not. In this case, (3.50) collapses to (3.49),

and the latter is the preferred model.

(3) γ2 and γ3 are both statistically significant. This would imply that both x2 and x3 have

incremental explanatory power for y, in which case both variables should be retained.

Models (3.48) and (3.49) are both ditched and (3.50) is the preferred model.

(4) Neither γ2 nor γ3 are statistically significant. In this case, none of the models can be

dropped, and some other method for choosing between them must be employed.

Also, if the competing explanatory variables x2 and x3 are highly re-

lated (i.e. they are near collinear), it could be the case that if they are

both included, neither γ2 nor γ3 are statistically significant, while each is

significant in their separate regressions (3.48) and (3.49); see the section

on multicollinearity in chapter 4.

An alternative approach is via the J -encompassing test due to Davidson

and MacKinnon (1981). Interested readers are referred to their work or to

Gujarati (2003, pp. 533--6) for further details.

Key concepts
The key terms to be able to define and explain from this chapter are
● multiple regression model ● variance-covariance matrix

● restricted regression ● F -distribution

● R2
● R̄2

● hedonic model ● encompassing regression

● data mining

Appendix 3.1 Mathematical derivations of CLRM results

Derivation of the OLS coefficient estimator in the

multiple regression context

In the multiple regression context, in order to obtain the parameter esti-

mates, β1, β2, . . . , βk , the RSS would be minimised with respect to all the

elements of β. Now the residuals are expressed in a vector:

û =

⎡

⎢

⎢

⎢

⎣

û1

û2

...

ûT

⎤

⎥

⎥

⎥

⎦

(3A.1)
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The RSS is still the relevant loss function, and would be given in a matrix

notation by expression (3A.2)

L = û′û = [û1û2 . . . ûT ]

⎡

⎢

⎢

⎢

⎣

û1

û2

...

ûT

⎤

⎥

⎥

⎥

⎦

= û2
1 + û2

2 + · · · + û2
T =

∑

û2
t (3A.2)

Denoting the vector of estimated parameters as β̂, it is also possible to

write

L = û′û = (y − X β̂)′(y − X β̂) = y′y − β̂
′
X ′y − y′ X β̂ + β̂

′
X ′ X β̂ (3A.3)

It turns out that β̂
′
X ′y is (1 × k) × (k × T ) × (T × 1) = 1 × 1, and also that

y′ X β̂ is (1 × T ) × (T × k) × (k × 1) = 1 × 1, so in fact β̂
′
X ′y = y′ X β̂. Thus

(3A.3) can be written

L = û′û = (y − X β̂)′(y − X β̂) = y′y − 2β̂
′
X ′y + β̂

′
X ′ X β̂ (3A.4)

Differentiating this expression with respect to β̂ and setting it to zero

in order to find the parameter values that minimise the residual sum of

squares would yield

∂L

∂β̂
= −2X ′y + 2X ′ X β̂ = 0 (3A.5)

This expression arises since the derivative of y′y is zero with respect to

β̂, and β̂
′
X ′ X β̂ acts like a square of X β̂, which is differentiated to 2X ′ X β̂.

Rearranging (3A.5)

2X ′y = 2X ′ X β̂ (3A.6)

X ′y = X ′ X β̂ (3A.7)

Pre-multiplying both sides of (3A.7) by the inverse of X ′ X

β̂ = (X ′ X )−1 X ′y (3A.8)

Thus, the vector of OLS coefficient estimates for a set of k parameters is

given by

β̂ =

⎡

⎢

⎢

⎢

⎣

β̂1

β̂2
...

β̂k

⎤

⎥

⎥

⎥

⎦

= (X ′ X )−1 X ′y (3A.9)
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Derivation of the OLS standard error estimator in the

multiple regression context

The variance of a vector of random variables β̂ is given by the formula

E[(β̂ − β)(β̂ − β)′]. Since y = Xβ + u, it can also be stated, given (3A.9),

that

β̂ = (X ′ X )−1 X ′(Xβ + u) (3A.10)

Expanding the parentheses

β̂ = (X ′ X )−1 X ′ Xβ + (X ′ X )−1 X ′u (3A.11)

β̂ = β + (X ′ X )−1 X ′u (3A.12)

Thus, it is possible to express the variance of β̂ as

E[(β̂ − β)(β̂ − β)′] = E[(β + (X ′ X )−1 X ′u − β)(β + (X ′ X )−1 X ′u − β)′]

(3A.13)

Cancelling the β terms in each set of parentheses

E[(β̂ − β)(β̂ − β)′] = E[((X ′ X )−1 X ′u)((X ′ X )−1 X ′u)′] (3A.14)

Expanding the parentheses on the RHS of (3A.14) gives

E[(β̂ − β)(β̂ − β)′] = E[(X ′ X )−1 X ′uu′ X (X ′ X )−1] (3A.15)

E[(β̂ − β)(β̂ − β)′] = (X ′ X )−1 X ′E[uu′]X (X ′ X )−1 (3A.16)

Now E[uu′] is estimated by s2 I , so that

E[(β̂ − β)(β̂ − β)′] = (X ′ X )−1 X ′s2 I X (X ′ X )−1 (3A.17)

where I is a k × k identity matrix. Rearranging further,

E[(β̂ − β)(β̂ − β)′] = s2(X ′ X )−1 X ′ X (X ′ X )−1 (3A.18)

The X ′ X and the last (X ′ X )−1 term cancel out to leave

var(β̂) = s2(X ′ X )−1 (3A.19)

as the expression for the parameter variance--covariance matrix. This quan-

tity, s2(X ′ X )−1, is known as the estimated variance--covariance matrix of

the coefficients. The leading diagonal terms give the estimated coefficient

variances while the off-diagonal terms give the estimated covariances be-

tween the parameter estimates. The variance of β̂1 is the first diagonal

element, the variance of β̂2 is the second element on the leading di-

agonal, . . . , and the variance of β̂k is the kth diagonal element, etc. as

discussed in the body of the chapter.
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Appendix 3.2 A brief introduction to factor models and principal
components analysis

Factor models are employed primarily as dimensionality reduction tech-

niques in situations where we have a large number of closely related

variables and where we wish to allow for the most important influences

from all of these variables at the same time. Factor models decompose

the structure of a set of series into factors that are common to all

series and a proportion that is specific to each series (idiosyncratic varia-

tion). There are broadly two types of such models, which can be loosely

characterised as either macroeconomic or mathematical factor models.

The key distinction between the two is that the factors are observable

for the former but are latent (unobservable) for the latter. Observable

factor models include the APT model of Ross (1976). The most common

mathematical factor model is principal components analysis (PCA). PCA

is a technique that may be useful where explanatory variables are closely

related -- for example, in the context of near multicollinearity. Specifi-

cally, if there are k explanatory variables in the regression model, PCA

will transform them into k uncorrelated new variables. To elucidate,

suppose that the original explanatory variables are denoted x1, x2, . . . ,

xk , and denote the principal components by p1, p2, . . . , pk . These prin-

cipal components are independent linear combinations of the original

data

p1 = α11x1 + α12x2 + · · · + α1k xk

p2 = α21x1 + α22x2 + · · · + α2k xk (3A.20)

. . . . . . . . . . . .

pk = αk1x1 + αk2x2 + · · · + αkk xk

where αi j are coefficients to be calculated, representing the coefficient

on the jth explanatory variable in the ith principal component. These

coefficients are also known as factor loadings. Note that there will be T

observations on each principal component if there were T observations

on each explanatory variable.

It is also required that the sum of the squares of the coefficients for

each component is one, i.e.

α2
11 + α2

12 + · · · + α2
1k = 1

...
... (3A.21)

α2
k1 + α2

k2 + · · · + α2
kk = 1
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This requirement could also be expressed using sigma notation

k
∑

j=1

α2
i j = 1 ∀ i = 1, . . . , k (3A.22)

Constructing the components is a purely mathematical exercise in con-

strained optimisation, and thus no assumption is made concerning the

structure, distribution, or other properties of the variables.

The principal components are derived in such a way that they are in

descending order of importance. Although there are k principal compo-

nents, the same as the number of explanatory variables, if there is some

collinearity between these original explanatory variables, it is likely that

some of the (last few) principal components will account for so little of

the variation that they can be discarded. However, if all of the original

explanatory variables were already essentially uncorrelated, all of the com-

ponents would be required, although in such a case there would have been

little motivation for using PCA in the first place.

The principal components can also be understood as the eigenvalues

of (X ′ X ), where X is the matrix of observations on the original variables.

Thus the number of eigenvalues will be equal to the number of variables,

k. If the ordered eigenvalues are denoted λi (i = 1, . . . , k), the ratio

φi =
λi

k
∑

i=1

λi

gives the proportion of the total variation in the original data explained

by the principal component i . Suppose that only the first r (0 < r < k)

principal components are deemed sufficiently useful in explaining the

variation of (X ′ X ), and that they are to be retained, with the remaining

k − r components being discarded. The regression finally estimated, after

the principal components have been formed, would be one of y on the r

principal components

yt = γ0 + γ1 p1t + · · · + γr pr t + ut (3A.23)

In this way, the principal components are argued to keep most of the

important information contained in the original explanatory variables,

but are orthogonal. This may be particularly useful for independent vari-

ables that are very closely related. The principal component estimates

(γ̂i , i = 1, . . . , r ) will be biased estimates, although they will be more ef-

ficient than the OLS estimators since redundant information has been
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removed. In fact, if the OLS estimator for the original regression of y on

x is denoted β̂, it can be shown that

γ̂r = P ′
r β̂ (3A.24)

where γ̂r are the coefficient estimates for the principal components, and

Pr is a matrix of the first r principal components. The principal component

coefficient estimates are thus simply linear combinations of the original

OLS estimates.

An application of principal components to interest rates

Many economic and financial models make use of interest rates in some

form or another as independent variables. Researchers may wish to in-

clude interest rates on a large number of different assets in order to re-

flect the variety of investment opportunities open to investors. However,

market interest rates could be argued to be not sufficiently independent

of one another to make the inclusion of several interest rate series in an

econometric model statistically sensible. One approach to examining this

issue would be to use PCA on several related interest rate series to de-

termine whether they did move independently of one another over some

historical time period or not.

Fase (1973) conducted such a study in the context of monthly Dutch mar-

ket interest rates from January 1962 until December 1970 (108 months).

Fase examined both ‘money market’ and ‘capital market’ rates, although

only the money market results will be discussed here in the interests of

brevity. The money market instruments investigated were:

● Call money

● Three-month Treasury paper

● One-year Treasury paper

● Two-year Treasury paper

● Three-year Treasury paper

● Five-year Treasury paper

● Loans to local authorities: three-month

● Loans to local authorities: one-year

● Eurodollar deposits

● Netherlands Bank official discount rate.

Prior to analysis, each series was standardised to have zero mean and

unit variance by subtracting the mean and dividing by the standard de-

viation in each case. The three largest of the ten eigenvalues are given in

table 3A.1.
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Table 3A.1 Principal component ordered eigenvalues for Dutch interest rates,

1962–1970

Monthly data Quarterly data

Jan 62--Dec 70 Jan 62--Jun 66 Jul 66--Dec 70 Jan 62--Dec 70
λ1 9.57 9.31 9.32 9.67
λ2 0.20 0.31 0.40 0.16
λ3 0.09 0.20 0.17 0.07
φ1 95.7% 93.1% 93.2% 96.7%

Source: Fase (1973). Reprinted with the permission of Elsevier Science.

Table 3A.2 Factor loadings of the first and second principal components for

Dutch interest rates, 1962–1970

j Debt instrument α j1 α j2

1 Call money 0.95 −0.22
2 3-month Treasury paper 0.98 0.12
3 1-year Treasury paper 0.99 0.15
4 2-year Treasury paper 0.99 0.13
5 3-year Treasury paper 0.99 0.11
6 5-year Treasury paper 0.99 0.09
7 Loans to local authorities: 3-month 0.99 −0.08
8 Loans to local authorities: 1-year 0.99 −0.04
9 Eurodollar deposits 0.96 −0.26

10 Netherlands Bank official discount rate 0.96 −0.03

Eigenvalue, λi 9.57 0.20
Proportion of variability explained by 95.7 2.0

eigenvalue i , φi (%)

Source: Fase (1973). Reprinted with the permission of Elsevier Science.

The results in table 3A.1 are presented for the whole period using the

monthly data, for two monthly sub-samples, and for the whole period

using data sampled quarterly instead of monthly. The results show clearly

that the first principal component is sufficient to describe the common

variation in these Dutch interest rate series. The first component is able to

explain over 90% of the variation in all four cases, as given in the last row

of table 3A.1. Clearly, the estimated eigenvalues are fairly stable across the

sample periods and are relatively invariant to the frequency of sampling

of the data. The factor loadings (coefficient estimates) for the first two

ordered components are given in table 3A.2.

As table 3A.2 shows, the loadings on each factor making up the

first principal component are all positive. Since each series has been
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standardised to have zero mean and unit variance, the coefficients α j1

and α j2 can be interpreted as the correlations between the interest rate

j and the first and second principal components, respectively. The fac-

tor loadings for each interest rate series on the first component are all

very close to one. Fase (1973) therefore argues that the first component

can be interpreted simply as an equally weighted combination of all of

the market interest rates. The second component, which explains much

less of the variability of the rates, shows a factor loading pattern of posi-

tive coefficients for the Treasury paper series and negative or almost zero

values for the other series. Fase (1973) argues that this is owing to the

characteristics of the Dutch Treasury instruments that they rarely change

hands and have low transactions costs, and therefore have less sensitivity

to general interest rate movements. Also, they are not subject to default

risks in the same way as, for example Eurodollar deposits. Therefore, the

second principal component is broadly interpreted as relating to default

risk and transactions costs.

Principal components can be useful in some circumstances, although

the technique has limited applicability for the following reasons:

● A change in the units of measurement of x will change the principal

components. It is thus usual to transform all of the variables to have

zero mean and unit variance prior to applying PCA.

● The principal components usually have no theoretical motivation or

interpretation whatsoever.

● The r principal components retained from the original k are the ones

that explain most of the variation in x , but these components might

not be the most useful as explanations for y.

Calculating principal components in EViews

In order to calculate the principal components of a set of series with

EViews, the first stage is to compile the series concerned into a group.

Re-open the ‘macro.wf1’ file which contains US Treasury bill and bond

series of various maturities. Select New Object/Group but do not name the

object. When EViews prompts you to give a ‘List of series, groups and/or

series expressions’, enter

USTB3M USTB6M USTB1Y USTB3Y USTB5Y USTB10Y

and click OK, then name the group Interest by clicking the Name tab. The

group will now appear as a set of series in a spreadsheet format. From

within this window, click View/Principal Components. Screenshot 3.2 will

appear.
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There are many features of principal components that can be examined,

but for now keep the defaults and click OK. The results will appear as in

the following table.

Principal Components Analysis
Date: 08/31/07 Time: 14:45
Sample: 1986M03 2007M04
Included observations: 254
Computed using: Ordinary correlations
Extracting 6 of 6 possible components

Eigenvalues: (Sum = 6, Average = 1)
Cumulative Cumulative

Number Value Difference Proportion Value Proportion

1 5.645020 5.307297 0.9408 5.645020 0.9408
2 0.337724 0.323663 0.0563 5.982744 0.9971
3 0.014061 0.011660 0.0023 5.996805 0.9995
4 0.002400 0.001928 0.0004 5.999205 0.9999
5 0.000473 0.000150 0.0001 5.999678 0.9999
6 0.000322 -- 0.0001 6.000000 1.0000

Eigenvectors (loadings):
Variable PC 1 PC 2 PC 3 PC 4 PC 5 PC 6

USTB3M 0.405126 −0.450928 0.556508 −0.407061 0.393026 −0.051647
USTB6M 0.409611 −0.393843 0.084066 0.204579 −0.746089 0.267466
USTB1Y 0.415240 −0.265576 −0.370498 0.577827 0.335650 −0.416211
USTB3Y 0.418939 0.118972 −0.540272 −0.295318 0.243919 0.609699
USTB5Y 0.410743 0.371439 −0.159996 −0.461981 −0.326636 −0.589582
USTB10Y 0.389162 0.647225 0.477986 0.3973990 0.100167 0.182274

Ordinary correlations:
USTB3M USTB6M USTB1Y USTB3Y USTB5Y USTB10Y

USTB3M 1.000000
USTB6M 0.997052 1.000000
USTB1Y 0.986682 0.995161 1.000000
USTB3Y 0.936070 0.952056 0.973701 1.000000
USTB5Y 0.881930 0.899989 0.929703 0.987689 1.000000
USTB10Y 0.794794 0.814497 0.852213 0.942477 0.981955 1.000000

It is evident that there is a great deal of common variation in the series,

since the first principal component captures 94% of the variation in the

series and the first two components capture 99.7%. Consequently, if we

wished, we could reduce the dimensionality of the system by using two

components rather than the entire six interest rate series. Interestingly,
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Screenshot 3.2

Conducting PCA in

EViews

the first component comprises almost exactly equal weights in all six

series.

Then Minimise this group and you will see that the ‘Interest’ group

has been added to the list of objects.

Review questions

1. By using examples from the relevant statistical tables, explain the

relationship between the t - and the F -distributions.

For questions 2–5, assume that the econometric model is of the form

yt = β1 + β2x2t + β3x3t + β4x4t + β5x5t + ut (3.51)

2. Which of the following hypotheses about the coefficients can be tested

using a t -test? Which of them can be tested using an F -test? In each

case, state the number of restrictions.

(a) H0 : β3 = 2

(b) H0 : β3 + β4 = 1
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(c) H0 : β3 + β4 = 1 and β5 = 1

(d) H0 : β2 = 0 and β3 = 0 and β4 = 0 and β5 = 0

(e) H0 : β2β3 = 1

3. Which of the above null hypotheses constitutes ‘THE’ regression

F -statistic in the context of (3.51)? Why is this null hypothesis

always of interest whatever the regression relationship under study?

What exactly would constitute the alternative hypothesis in this

case?

4. Which would you expect to be bigger – the unrestricted residual sum of

squares or the restricted residual sum of squares, and why?

5. You decide to investigate the relationship given in the null hypothesis of

question 2, part (c). What would constitute the restricted regression?

The regressions are carried out on a sample of 96 quarterly

observations, and the residual sums of squares for the restricted and

unrestricted regressions are 102.87 and 91.41, respectively. Perform

the test. What is your conclusion?

6. You estimate a regression of the form given by (3.52) below in order to

evaluate the effect of various firm-specific factors on the returns of a

sample of firms. You run a cross-sectional regression with 200

firms

ri = β0 + β1Si + β2MBi + β3PEi + β4BETAi + ui (3.52)

where: ri is the percentage annual return for the stock

Si is the size of firm i measured in terms of sales revenue

MBi is the market to book ratio of the firm

PEi is the price/earnings (P/E) ratio of the firm

BETAi is the stock’s CAPM beta coefficient

You obtain the following results (with standard errors in parentheses)

r̂i = 0.080 + 0.801Si + 0.321MBi + 0.164PEi − 0.084BETAi

(0.064) (0.147) (0.136) (0.420) (0.120) (3.53)

Calculate the t -ratios. What do you conclude about the effect of each

variable on the returns of the security? On the basis of your results,

what variables would you consider deleting from the regression? If a

stock’s beta increased from 1 to 1.2, what would be the expected

effect on the stock’s return? Is the sign on beta as you would have

expected? Explain your answers in each case.
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7. A researcher estimates the following econometric models including a

lagged dependent variable

yt = β1 + β2x2t + β3x3t + β4 yt−1 + ut (3.54)


yt = γ1 + γ2x2t + γ3x3t + γ4 yt−1 + vt (3.55)

where ut and vt are iid disturbances.

Will these models have the same value of (a) The residual sum of

squares (RSS), (b) R2, (c) Adjusted R2? Explain your answers in each

case.

8. A researcher estimates the following two econometric models

yt = β1 + β2x2t + β3x3t + ut (3.56)

yt = β1 + β2x2t + β3x3t + β4x4t + vt (3.57)

where ut and vt are iid disturbances and x3t is an irrelevant variable

which does not enter into the data generating process for yt . Will the

value of (a) R2, (b) Adjusted R2, be higher for the second model than

the first? Explain your answers.

9. Re-open the CAPM Eviews file and estimate CAPM betas for each of the

other stocks in the file.

(a) Which of the stocks, on the basis of the parameter estimates you

obtain, would you class as defensive stocks and which as

aggressive stocks? Explain your answer.

(b) Is the CAPM able to provide any reasonable explanation of the

overall variability of the returns to each of the stocks over the

sample period? Why or why not?

10. Re-open the Macro file and apply the same APT-type model to some of

the other time-series of stock returns contained in the CAPM-file.

(a) Run the stepwise procedure in each case. Is the same sub-set of

variables selected for each stock? Can you rationalise the

differences between the series chosen?

(b) Examine the sizes and signs of the parameters in the regressions

in each case – do these make sense?

11. What are the units of R2?


